Voith Turbo

VOITH

IPV Katalog Hochdruck-Innenzahnradpumpen

Vorteile, die überzeugen

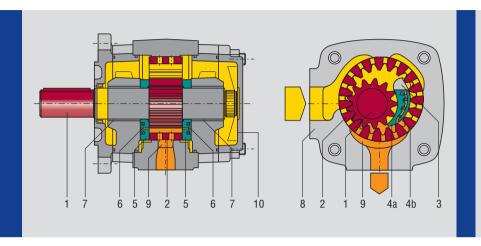
Innenzahnradpumpen von Voith Turbo H + L Hydraulic verrichten in hunderttausenden Maschinen auf der ganzen Welt zuverlässig ihren Dienst. Hochwertige Technik, robuste Konstruktion und wirtschaftlicher Betrieb haben tausende Kunden überzeugt. Mit dem Vertrauen unserer Kunden wurden wir Weltmarktführer für Hochdruckpumpen nach dem Innenzahnrad-Prinzip mit Spaltkompensation.

Eigenschaften, die zählen

Der Markt fordert von Hydropumpen geringen Raumbedarf, niedrige Betriebsgeräusche, minimale Druckund Volumenstrompulsation bei gleichzeitig hohen Wirkungsgraden. Diesen Forderungen hat Voith Turbo H + L Hydraulic mit der Entwicklung der IPV Pumpen Rechnung getragen. Die radiale und axiale Dichtspalt-Kompensation sowie eine volumenoptimierte Evolventenverzahnung tragen im Wesentlichen mit dazu bei, diese Anforderungen zu erfüllen.

Maschinen, die laufen

Von außen fast nie sichtbar, aber in unzähligen Maschinen sorgen Voith Turbo H + L Hydraulic Innenzahnradpumpen zuverlässig für hohe Drücke. Hauptanwendungsbereiche sind Maschinen in der Kunststoffund Blechbearbeitungstechnik, Pressen sowie Geräte der Förderund Hebetechnik. Schiffbau, Kommunalfahrzeuge, Kraftwerkstechnik und der Sondermaschinenbau bieten weitere Einsatzfelder.


Inhaltsverzeichnis

Druckgießmaschine, Pumpe mit variablem Förderstrom durch Drehzahlregelung

Aufbau und Funktion	3
Leistungsdaten	4
IPV 3	6
IPV 4	8
IPV 5	10
IPV 6	12
IPV 7	14
SAE-Saug- und Druckflansche	16
Typenschlüssel Bestellbezeichnung	17
Mehrstrompumpen Pumpenkombinationen	18
Ausführungen	19

Aufbau und Funktion

- 1 Ritzelwelle
- 2 Hohlrad
- 3 Füllstückstift
- 4a Füllstück-Segmentträger
- 4b Füllstück-Dichtsegment
 - 5 Axialscheibe
 - 6 Axialdruckfeld
 - 7 Gleitlager
- 8 Gehäuse
- 9 Hydrostatisches Lager
- 10 Abschlussdeckel mit Entlüftungsschraube
- Saugraum
- Druckraum

Konstruktive Merkmale

- Innenzahnradprinzip
- Gleitlagerung
- Radiale und axiale Dichtspaltkompensation
- Volumenoptimierte Evolventenverzahnung

Produkteigenschaften:

- Lange Lebensdauer
- Hoher volumetrischer Wirkungsgrad
- Hoher Gesamtwirkungsgrad
- Sehr geringe F\u00f6rderstrom- und Druckpulsation
- Niedriger Geräuschpegel
- Kleine Abmessungen
- Geringes Gewicht
- Großer Drehzahlbereich
- Sehr gute Saugeigenschaften
- Hohe zulässige Viskosität
- Einfache Wartung
- Mehrfachpumpen und Pumpenkombinationen möglich
- Für drehzahlgeregelte Antriebe geeignet (variabler Volumenstrom)
- Motorischer Betrieb möglich (Energierückgewinnung!)

Funktion

Durch die Drehung der Zahnräder in der Pumpe wird die Druckflüssigkeit (in der Regel Hydrauliköl) in das Gehäuse und damit in den Raum zwischen Ritzel und Hohlrad gesaugt. Die beiden Zahnräder laufen über einen großen Umfangsbereich völlig frei, so dass das Ansaugverhalten der Pumpe sehr gut ist.

In radialer Richtung werden die Zahnkammern durch den Zahneingriff bzw. das Füllstück verschlossen. In axialer Richtung dichten die Axialscheiben den Druckraum nahezu spaltfrei ab. Diese Konstruktion minimiert die volumetrischen Verluste und erhöht den Wirkungsgrad.

Bei der Rotation der Zahnräder treten die Zahnköpfe in die Zahnlücken und verdrängen die Druckflüssigkeit.

Kombinierbarkeit

IPV Pumpen sind zu Doppel- oder Mehrstrompumpen kombinierbar. Kombinationen mit anderen Voith Turbo H + L Hydraulic Pumpenbaureihen sind ebenfalls möglich. In Verbindung mit Pumpen der Mittel- und Niederdruckbaureihen erschließt sich ein breites Spektrum an Einsatzmöglichkeiten.

Weitere Informationen zur Kombinierbarkeit finden Sie auf der Seite 9 und in unserem Prospekt Nr. G1714 (Voith Mehrstrompumpen).

Kombinationen mit Fremdfabrikaten sind in der Regel möglich. Fragen Sie einfach bei uns an.

Variabler Volumenstrom

Wir liefern komplette Hydroaggregate mit IPV Pumpe, Asynchronmotor und Frequenzumrichter (EPA/EPAF-System) zur Erzeugung variabler Volumenströme. Weitere Informationen hierzu in unserem Prospekt Nr. G1420 (Voith EPA System).

Leistungsdaten

Technische Daten		Berechnung	en
Bauart	Innenzahnradpumpe mit radialer und axialer Dichtspaltkompensation	Förderstrom	$Q = V_{gth} \cdot n \cdot \eta_v \cdot 10^{-3} [I/min]$
Тур	IPV	Leistung	$P = \frac{Q \cdot \Delta p}{600 \cdot \eta_g} [kW]$
Befestigungsarten	SAE-Lochflansch; ISO 3019/1 oder	V _{g th}	Fördervolumen pro Umdrehung [cm³]
	VDMA-Lochflansch; ISO 3019/2	n	Drehzahl [min ⁻¹]
Leitungsbefestigung	SAE-Saug- und -Druckflansch J 518 C Code 61	ην	Volumetrischer Wirkungsgrad
Drehrichtung	rechts- oder linksdrehend	η_{g}	Gesamtwirkungsgrad
Einbaulage	beliebig	Δp	Differenzdruck [bar]
Wellenbelastung	radiale und axiale Belastung der Antriebswelle nur nach Rücksprache mit Voith Turbo H + L Hydraulic		
Eingangsdruck	0,63 bar Absolutdruck		
Druckflüssigkeit	HLP Mineralöle nach DIN 51524, Teil 2 oder 3		
Viskositätsbereich der Druckflüssigkeit	10100 mm ² s ⁻¹ (cSt)		
Zulässige Startviskosität	max. 2000 mm ² s ⁻¹ (cSt)		
Zulässige Temperatur der Druckflüssigkeit	-20+80 °C		
Erforderliche Reinheit der Druckflüssigkeit nach NAS 1638	Klasse 8		
Filterung	Filtrations quotient min. $\beta_{20} \ge 75$, empfohlen $\beta_{10} \ge 100$ (höhere Lebensdauer)		
Zulässige Umgebungstemperatur	-10+60 °C		

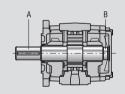
		Drel	ızahl	Förderstrom		Drücke	
Typ, Baugröße-	Fördervolumen pro Umdrehung	min.	max.	bei 1.500 min ⁻¹	Dauerdruck	Spitzendruck bei 1.500 min ⁻¹	Spitzendruck bei n _{max}
Fördergröße	[cm³]	[min ⁻¹]	[min ⁻¹]	[l/min]	[bar]	[bar]	[bar]
IPV 3 – 3.5	3,6	400	3.600	5,4	330	345	345
IPV 3 – 5	5,2	400	3.600	7,8	330	345	345
IPV 3 - 6.3	6,4	400	3.600	9,6	330	345	345
IPV 3 – 8	8,2	400	3.600	12,3	330	345	345
IPV 3 – 10	10,2	400	3.600	15,3	330	345	345
IPV 4 – 13	13,3	400	3.600	19,9	330	345	345
IPV 4 – 16	15,8	400	3.400	23,7	330	345	345
IPV 4 – 20	20,7	400	3.200	31,0	330	345	345
IPV 4 – 25	25,4	400	3.000	38,1	300	330	330
IPV 4 - 32	32,6	400	2.800	48,9	250	280	280
IPV 5 – 32	33,1	400	3.000	49,6	315	345	315
IPV 5 - 40	41,0	400	2.800	61,5	315	345	315
IPV 5 - 50	50,3	400	2.500	75,4	280	315	280
IPV 5 – 64	64,9	400	2.200	97,3	230	250	250
IPV 6 – 64	64,1	400	2.600	96,1	300	330	300
IPV 6 - 80	80,7	400	2.400	121,0	280	315	280
IPV 6 – 100	101,3	400	2.100	151,9	250	300	270
IPV 6 – 125	126,2	400	1.800	189,3	210	250	250
IPV 7 – 125	125,8	400	2.200	188,7	300	330	300
IPV 7 – 160	160,8	400	2.000	241,2	280	315	280
IPV 7 – 200	202,7	400	1.800	304,0	250	300	270
IPV 7 – 250	251,7	400	1.800	377,5	210	250	250

Die angegebenen Werte gelten für:

- die Förderung von Mineralölen mit einer Viskosität von 20...40 mm²s⁻¹
- einen Eingangsdruck von 0,8...3,0 bar

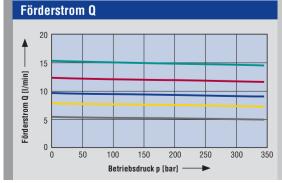
Hinweise:

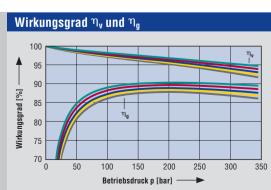
- Spitzendrücke gelten für 15%
 Einschaltdauer und einer maximalen Taktzeit von 1 Minute.
- Spitzendrücke bei abweichenden Drehzahlen bitte anfragen.
- Das Fördervolumen kann aufgrund von Fertigungstoleranzen um ca. 1,5% geringer sein.

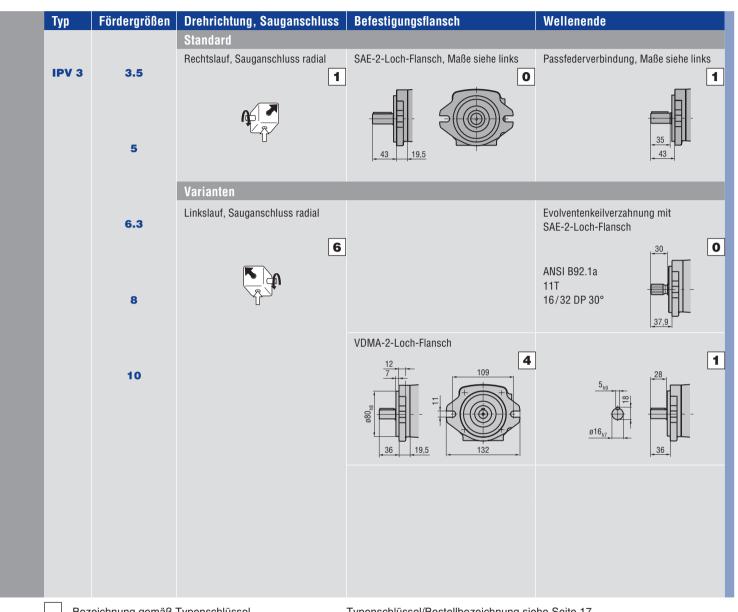

IPV₃

Standardausführungen

Ausführungen und Maße

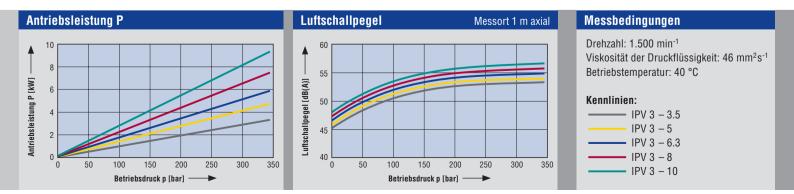

* Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

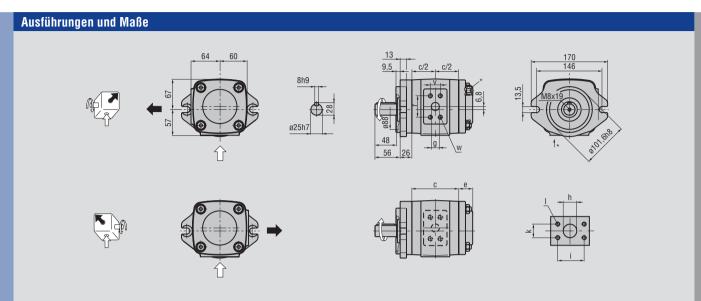

Ausführung					Maß	Be und Gev	vicht					SAE-Flansch-Nr.				
	C	е	g	h	i	k			v	w	Gewicht	icht				
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]					
IPV 3 – 3.5	66	20,5	9	14	38,1	15,5	M8x13	38,1	17,5	M8x13	4,0	10	10			
IPV 3 – 5	70	20,5	11	14	38,1	17,5	M8x13	38,1	17,5	M8x13	4,2	10	10			
IPV 3 – 6.3	73	20,5	11	19	47,5	22	M10x15	38,1	17,5	M8x13	4,4	10	11			
IPV 3 – 8	77,5	20,5	13	19	47,5	22	M10x15	38,1	17,5	M8x13	4,6	10	11			
IPV 3 – 10	82,5	20,5	13	21	52,4	26,2	M10x15	38,1	17,5	M8x13	4,8	10	12			



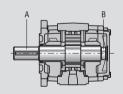
Zulässige Antriebsmomente:

Antriebswelle A: 160 Nm Sekundärwelle B: 80 Nm

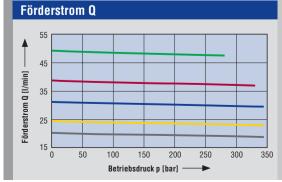


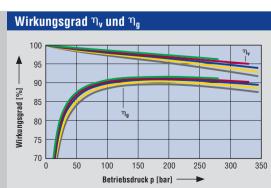

Bezeichnung gemäß Typenschlüssel

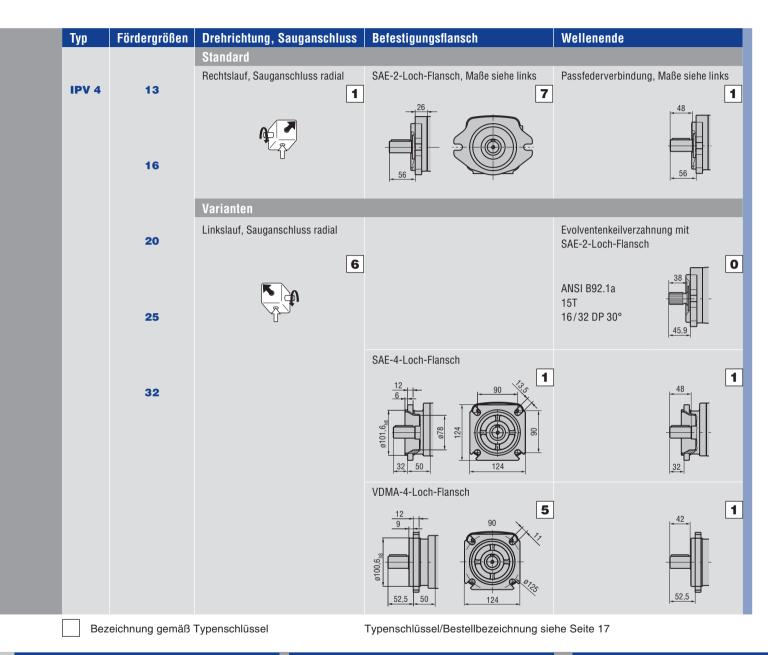
Typenschlüssel/Bestellbezeichnung siehe Seite 17

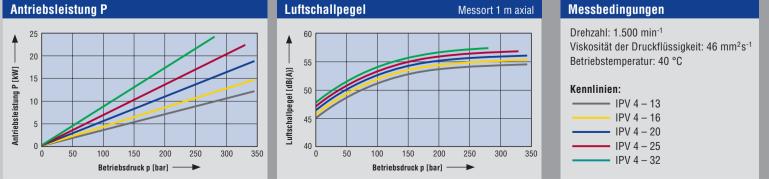

IPV 4

Standardausführungen

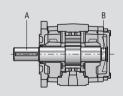

* Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.


Ausführung					Maí	Be und Gev	vicht					SAE-Flansch-Nr.	
	C	е	g	h	i	k		r	v	w	Gewicht		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPV 4 – 13	88,5	31	13	23	52,4	26,2	M10x15	38,1	17,5	M8x13	8,6	10	12
IPV 4 – 16	92,5	31	14	25	52,4	26,3	M10x15	38,1	17,5	M8x13	9,0	10	12
IPV 4 – 20	98	31	18	27	58,7	30,2	M10x15	47,5	22	M10x15	9,6	11	13
IPV 4 – 25	104	31	18	30	58,7	30,2	M10x15	47,5	22	M10x15	10,2	11	13
IPV 4 – 32	113	31	18	32	58,7	30,2	M10x15	47,5	22	M10x15	11,0	11	13




Zulässige Antriebsmomente:

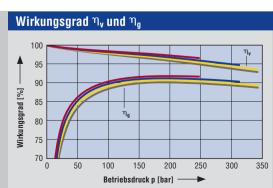
Antriebswelle A: 335 Nm Sekundärwelle B: 190 Nm

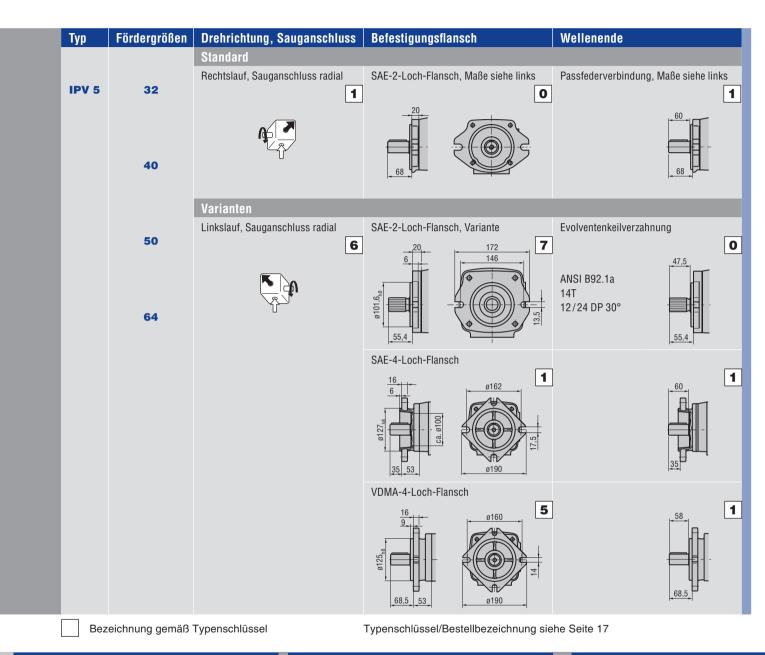

IPV 5

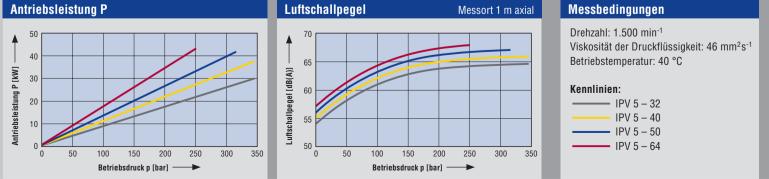
Standardausführungen

Ausführungen und Maße

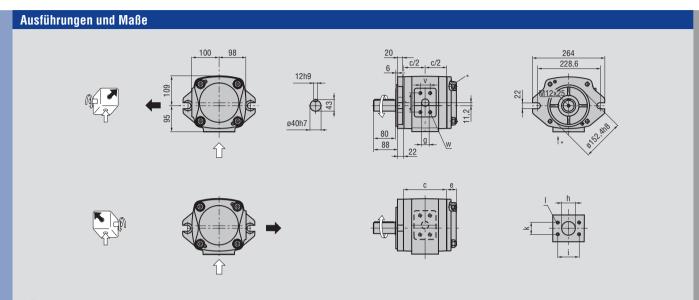

* Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.

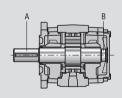

Ausführung		Maße und Gewicht											
	C	е	g	h	i	k	ı	r	v	w	Gewicht		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPV 5 – 32	119	36	18	32	58,7	30,2	M10x15	47,5	22	M10x15	15,5	11	13
IPV 5 – 40	125	36	19	35	70	36	M12x20	52,4	26,2	M10x15	16,3	12	30
IPV 5 – 50	132	36	21	40	70	36	M12x20	52,4	26,2	M10x15	17,4	12	30
IPV 5 – 64	163	36	23	40	70	36	M12x20	52,4	26,2	M10x16	18,7	12	30



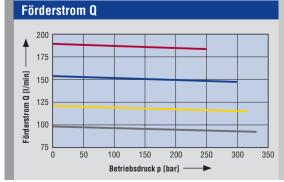

Zulässige Antriebsmomente:

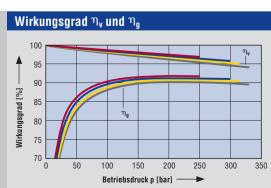
Antriebswelle A: 605 Nm Sekundärwelle B: 400 Nm

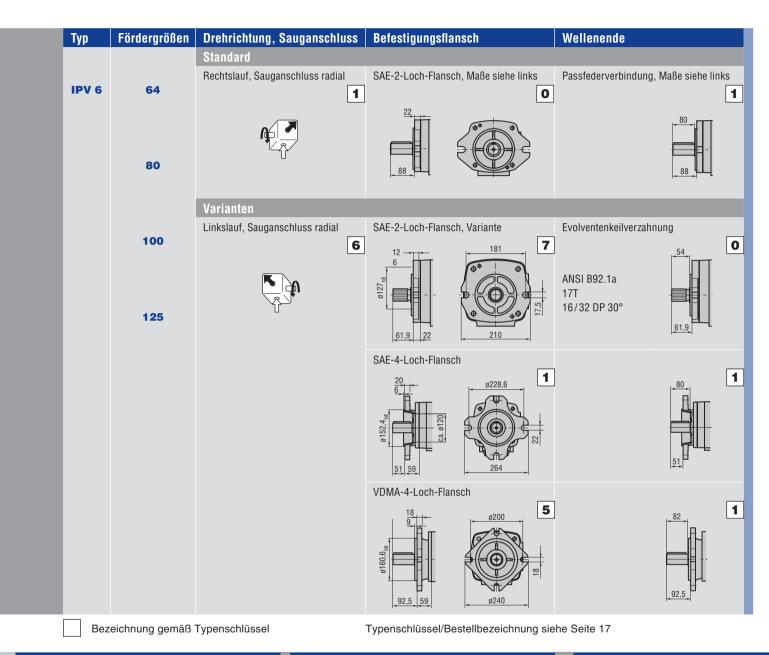


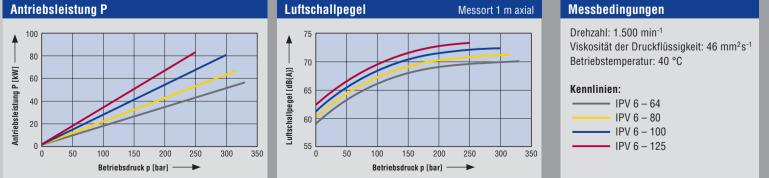

IPV₆

Standardausführungen

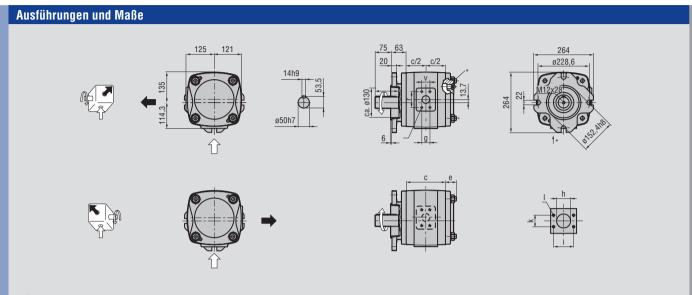

* Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.


Ausführung					Maí	Be und Gev	vicht					SAE-Flansch-Nr.	
		е	g	h	i	k			v	w	Gewicht		
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPV 6 – 64	140	40	23	40	70	36	M12x20	52,4	26,2	M10x15	29,2	12	30
IPV 6 – 80	148	35	23	45	77,8	42,9	M12x20	70	36	M12x20	30,7	14	15
IPV 6 – 100	158	35	27	50	77,8	42,9	M12x20	70	36	M12x20	32,6	14	15
IPV 6 – 125	170	40	30	50	77,8	42,9	M12x20	70	36	M10x16	35,0	14	15




Zulässige Antriebsmomente:

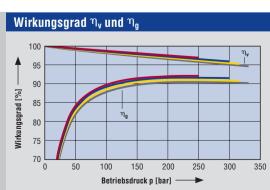
Antriebswelle A: 1.050 Nm Sekundärwelle B: 780 Nm

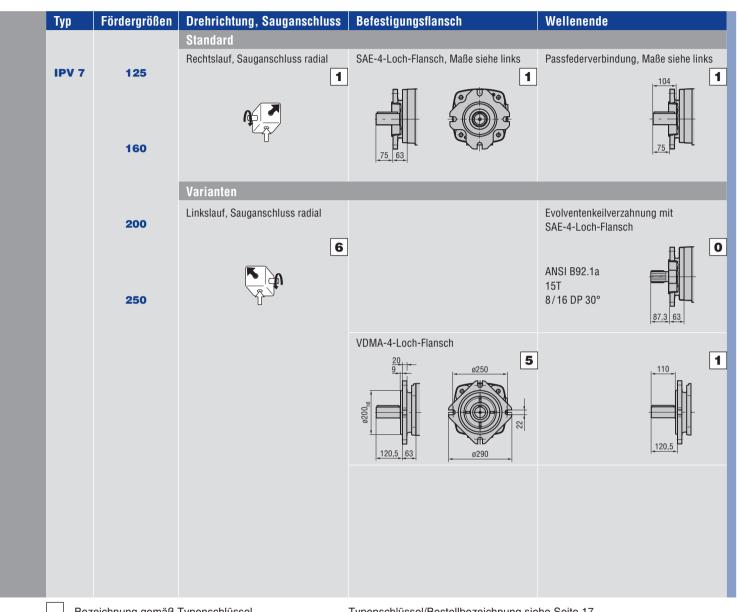


IPV 7

Standardausführungen

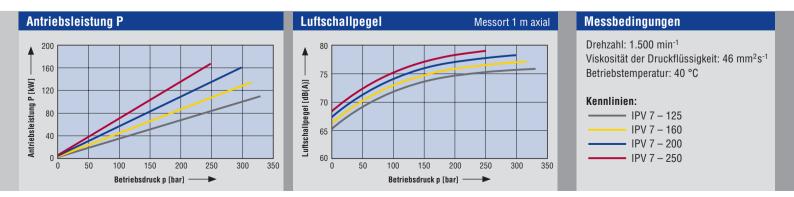

* Öffnung beim Pumpbetrieb verschließen; Verschlussschraube M10x1, Innensechskant SW5, Anzugsdrehmoment 10 Nm. Vor Inbetriebnahme kann hier je nach Lage der Pumpe befüllt oder entlüftet werden.


Ausführung					Maí	Be und Gev	vicht					SAE-Flansch-Nr.	
		е	g	h	i	k							
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Gewinde	[mm]	[mm]	Gewinde	[kg]		
IPV 7 – 125	152	48	30	50	77,8	42,9	M12x20	70	36	M12x20	46,5	14	15
IPV 7 – 160	162	48	30	56	89	50,8	M12x20	70	36	M12x20	50	14	16
IPV 7 – 200	174	46	34	62	89	50,8	M12x20	70	36	M12x20	54	14	16
IPV 7 – 250	188	42	38	72	106,3	62	M16x25	70	36	M12x20	59	14	17



Zulässige Antriebsmomente:

Antriebswelle A: 1.960 Nm Sekundärwelle B: 1.200 Nm

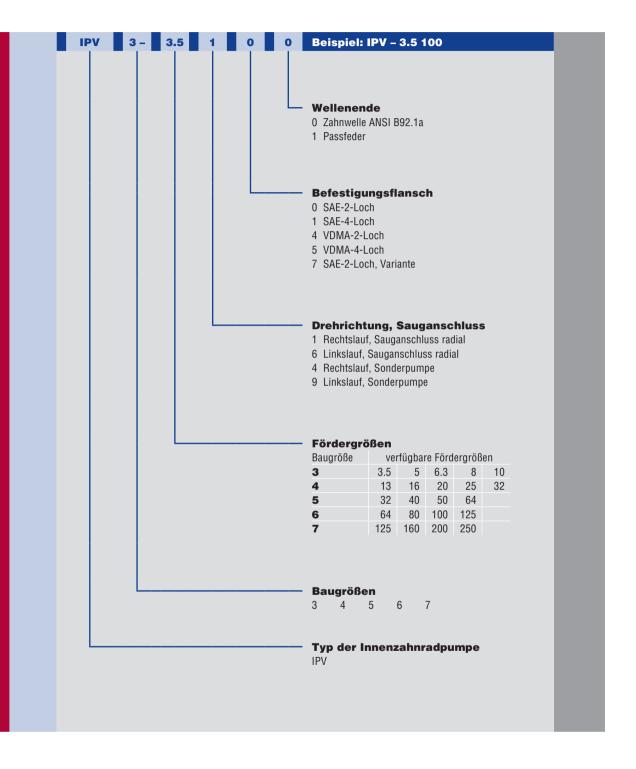


Bezeichnung gemäß Typenschlüssel

Typenschlüssel/Bestellbezeichnung siehe Seite 17

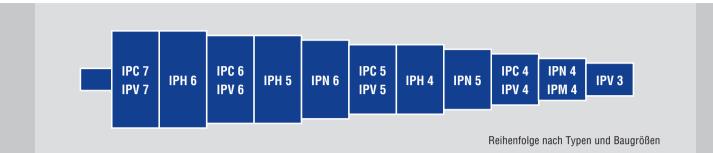
SAE-Saug- und Druckflansche

nach SAE J 518 C Code 61


SAE-Flansch, einteilig

SAE-Flansch-Nr.	A	В	С	D	E ¹⁾	i	k	S ²⁾	max. Druck
	Gewinde	[mm]	[mm]	[mm]	Dichtring	[mm]	[mm]	Gewinde	[bar]
10	G 1/2	46	54	36	18,66 – 3,53	38,1	17,5	M 8	345
11	G 3/ ₄	50	65	36	24,99 – 3,53	47,6	22,2	M 10	345
12	G 1	55	70	38	32,92 - 3,53	52,4	26,2	M 10	345
13	G 1-1/ ₄	68	79	41	37,69 – 3,53	58,7	30,2	M 10	276
143)	G 1-1/ ₂	82	98	50	47,22 – 3,53	70	36	M 12	345 ³⁾
30	G 1-1/ ₂	78	93	45	47,22 – 3,53	70	36	M 12	207
15	G 2	90	102	45	56,74 - 3,53	77,8	42,9	M 12	207
16	G 2-1/ ₂	105	114	50	69,44 - 3,53	89	50,8	M 12	172
17	G 3	124	134	50	85,32 - 3,53	106,3	62	M 16	138
18	G 4	146	162	48	110,72 – 3,53	130	77,8	M 16	34

Runddichtring (O-Ring) ISO-R 1629 NBR
 Zylinderschraube EN ISO 4762
 Sonderausführung, abweichend von SAE J 518 C Code 61


Typenschlüssel

Bestellbezeichnung

Mehrstrompumpen

Pumpenkombinationen

Kombinationen IPV Pumpen

- IPV Pumpen gleicher oder verschiedener Baugrößen können zu Mehrstrompumpen kombiniert werden.
- Alle Baugrößen mit dem jeweiligen Fördervolumen sind als Zweioder Dreistrompumpen lieferbar; Vierstrompumpen müssen von Voith Turbo H + L Hydraulic ausgelegt werden.
- Die Anordnung erfolgt nach Baugröße und Fördergröße ansteigend.

Kombination IPV/IP...-Pumpen

- Die Kombination von IPV Pumpen mit anderen Voith Turbo
 H + L Hydraulic Pumpenbaureihen (z.B. Mitteldruckpumpen IPC oder Niederdruckpumpen IPN) ist möglich.
- Die Anordnung der Pumpen erfolgt nach Typen und Baugrößen wie im Bild oben dargestellt.
- Bei aufeinander folgendem gleichen Typ oder gleicher Baugröße wird die Pumpe mit größerem Förderstrom näher am Antrieb platziert.

Anbau, Zusammenbau

- Mehrstrompumpen werden in der Regel über einen Flansch am Antrieb befestigt. Alle Informationen zu den Flanschausführungen und zu den Wellenenden finden Sie im jeweiligen Katalog der Pumpenbaureihe.
- Weitere Hinweise hierzu, wie zum Beispiel über die Bestimmung der Zwischengehäuse, im Prospekt Nr. G 1714 (Voith Mehrstrompumpen).

Auswahl

- Druckbereiche bestimmen und dazu die Pumpenbaureihe(n) festlegen.
- 2. Fördervolumen bestimmen und dazu die Baugröße(n) auswählen.
- 3. Reihenfolge der Pumpen festlegen.
- 4. Drehmomentüberprüfung.
- Drehrichtung und Ansaugung bestimmen.
- 6. Befestigungsflansch und Wellenende festlegen.

Ausführungen

Drehrichtung und Ans	augung		Befestigungs	sflansch		Wellenende		
rechts	\sim	links						
	2 7		+					
	1 6		0	1	1	1	0	
	2 7		7	5	5			
	1 6		Ausführungen u der jeweiligen F			Ausführungen siehe Katalog o gen Pumpenba	der jeweili-	
	3 8			-2-Loch-Flans				
	3 8		4 VDN	MA-2-Loch-Flai	nsch			
Sonderausführung	4 9	Sonderausführung		MA-4-Loch-Flan E-2-Loch-Flans				

Voith Turbo H + L Hydraulic GmbH & Co. KG Schuckertstraße 15 71277 Rutesheim, Germany Tel. +49 7152 992-3 Fax +49 7152 992-400 sales-rut@voith.com www.voithturbo.com/hydraulik-systeme

Kunststoff-Spritzgießmaschine

Abkantpresse

Stanzmaschine

Hydraulikaggregat

Hebebühne

Marineanwendungen

- Druckgießmaschinen
- Packpressen
- Scheren
- Erdbohrmaschinen
- Prüfstände
- Hydraulische Pressen
- Kranbau
- Hebeeinrichtungen
- Müllfahrzeuge